Probability Theory

Dr. Wan Nor Arifin

Biostatistics and Research Methodology Unit
Universiti Sains Malaysia

Last update: Oct 25, 2023

Outlines

- Introduction
- Basic Concepts
- Counting Methods
- Marginal, Joint and Conditional Probabilities
- Probability Laws

Expected outcomes

- Understand the basic concepts in probability
- Able to calculate probability by counting method
- Understand the concept of conditional probability and able to apply the concept to calculate related probability

Introduction

Introduction

Probability is...

"the chance that a given event will occur" (Merriam-Webster, 2022)
"a branch of mathematics that studies the possible outcomes of given events together with the outcomes'relative likelihoods and distributions" (Weisstein, 2022)

Range: Impossible $0 \rightarrow 1$ Certain

Classification

- Classical
- Frequentist
- Bayesian

Classification

- Classical
- Frequentist
- Bayesian
- Game of chance - flipping coin, rolling dice
- Finite number of possible outcomes

Example: If a fair 6-sided die is rolled, probability of getting a 1 is

$$
P(1)=\frac{1}{6}
$$

Ciassification

- Classical
- Frequentist
- Bayesian
- Relative frequency of outcome after a number of repetition of random trials

$$
P(x) \approx \frac{n_{x}}{n_{t}}
$$

Example: Based on data collected over 200 years, it rained 15 out of 30 days in September. The probability of rain on 23 Sept 2022 is

$$
P(\text { Rain on September } 23)=\frac{15}{30}=\frac{1}{2}
$$

Ciassification

- Classical
- Frequentist
- Bayesian
- 1763 Thomas Bayes - Bayes' Theorem
- Updates prior knowledge (probability) in light of new data
- Will be introduced formally later in this lecture

Basic Concepts

Terms

- Experiment
- Sample Space
- Event
- Union
- Intersection
- Complement
- Disjoint

Terms

A situation for which the

- Experiment outcomes occur randomly
- Sample Space List of all possible outcomes of an experiment, Ω
- Event

A subset of the sample space

Sample space for a fair 6-sided die,

$$
\Omega=\{1,2,3,4,5,6\}
$$

Event A, odd numbers for a fair 6-sided die,

$$
A=\{1,3,5\}
$$

Terms

When either A or B or both occurs

- Union
- Intersection
- Complement
- Disjoint

Terms

When both A and B occurs

$$
\begin{gathered}
A=\{1,2,3\} \\
B=\{3,4,5\} \\
A \cap B= \\
\{1,2,3,3,4,5\}=\{3\}
\end{gathered}
$$

- Union
- Intersection
- Complement
- Disjoint

Terms

- Union

- Intersection

When A does NOT occur

- Complement
- Disjoint

$$
\begin{gathered}
\Omega=\{1,2,3,4,5,6\} \\
A=\{1,2,3\} \\
A^{C}= \\
\{1,2,3,4,5,6\}=\{4,5,6\}
\end{gathered}
$$

Terms

- Union
- Intersection
- Complement

When two events have no shared elements

- Disjoint

$$
\begin{gathered}
A=\{1,2,3\} \\
C=\{4,5,6\} \\
A \cap B=\varnothing
\end{gathered}
$$

\varnothing is empty set

Properties

1. $P\left(A^{c}\right)=1-P(A)$
2. $P(\varnothing)=0$
3. If $A \subset B$, then $P(A) \leqslant P(B)$
4. Addition Law $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Counting Methods

Multiplication Principle

Basic: If one experiment has m outcomes and another experiment has n outcomes, then there are $m n$ possible outcomes for the two experiments.

\downarrow		\vee A				$\left[\begin{array}{ll} \bullet & 凶 \\ \Delta & \Delta j \end{array}\right.$									A_{i}^{φ}				
*				$\stackrel{+}{+}$		$+\uparrow$ $* * *$		$\stackrel{+}{*}$		+ +			+ + +						
\pm		$\stackrel{+}{*}$ $\%$				$4 \div$ \div		$\begin{aligned} & \div \div \\ & \div \\ & \div \div \% \end{aligned}$		$\begin{aligned} & \div \div \\ & \div \div \\ & \div \div \end{aligned}$						\vdots			
*				$\stackrel{+}{*}$		¢ + $+\infty ;$				-									

Example: Playing cards have 13 face values (outcomes) per suit and 4 suits (experiments). Thus
$13 \times 4=52$ face values

Multiplication Principle

Extended: If there are p experiments and the 1 st has n_{l} possible outcomes, the 2 nd n_{2}, \ldots, and the p th n_{p} possible outcomes, then there are a total of

$$
n_{1} \times n_{2} \times \ldots \times n_{p}
$$

possible outcomes for the p experiments.

Example: A fair 10 cent coin is thrown 4 times, each with two possible outcomes (hibiscus, congkak), thus

$$
2 \times 2 \times 2 \times 2=2^{4}=16 \text { possible outcomes }
$$

$\{\mathrm{HHHH}, \mathrm{CCCC}, \mathrm{HHHC}, \ldots\}$

Permutation

For a set of size n and a sample of size r, the number of different ordered samples without replacement:

$$
{ }^{n} P_{r}=\frac{n!}{(n-r)!}=n(n-1)(n-2) \ldots(n-r+1)
$$

Example: If the same number cannot appear twice, how many different ways to arrange number $0-9$ to form a 3 digits number sequence?

Sample size, $r=3$; Number of elements, $n=10$

$$
{ }^{n} P_{r}=\frac{n!}{(n-r)!}=\frac{10!}{7!}=10.9 .8=720 \text { ways } \quad 10 \quad 9 \quad 8
$$

Permutation

For a set of size n and a sample of size r, there are

$$
n^{r}
$$

different ordered samples with replacement

Example: How many different ways to arrange number $0-9$ to form a 3 digits number sequence?

Sample size, $r=3$; Number of elements, $n=10$

$$
n^{r}=10^{3}=1000 \text { ways }
$$

Combination

The number of unordered samples of r objects from n objects without replacement:
Binomial coefficient

$$
{ }^{n} C_{r}=\left|\begin{array}{l}
n \\
r
\end{array}\right|=\frac{n(n-1)(n-2) \ldots(n-r+1)}{r!}=\frac{n!}{(n-r)!} \times \frac{1}{(r)!}=\frac{n!}{(n-r)!r!}
$$

Example: If the same color cannot appear again, how many combinations of 2 colors out of 3 colors are possible?
$r=2 ; n=3$

$$
{ }^{n} C_{r}=\binom{n}{r}=\frac{n!}{(n-r)!r!}=\frac{3!}{(3-2)!2!}=\frac{3.2!}{1!2!}=\frac{3}{1}=3
$$

GB

Combination

The number of unordered samples of r objects from n objects with replacement:

$$
\frac{(r+n-1)!}{r!(n-1)!}
$$

Example: How many combinations of 2 colors out of 3 colors are possible?

$$
r=2 ; n=3
$$

RR RG

$$
\frac{(r+n-1)!}{r!(n-1)!}=\frac{(2+3-1)!}{2!(3-1)!}=\frac{4!}{2!2!}=\frac{4.3}{2!}=6
$$

GG
RB
BB
GB

connination

The number of ways that n objects can be grouped into r classes with n_{i} in the i th class:

Multinomial coefficient

$$
\binom{n}{n_{1} n_{2} \ldots n_{r}}=\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!}
$$

Example: A group of 7 eligible subjects in a clinical trial is allocated into 3 groups with size of 3,2 and 2 . How many ways the allocation could be done?

$$
\binom{7}{322}=\frac{7!}{3!2!2!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3!}{3!2!2!}=\frac{7 \cdot 6 \cdot 5 \cdot 4}{2 \cdot 1 \cdot 2 \cdot 1}=210
$$

Marginal, Joint and Conditional Probabilities

Marginal Probability

- Probability when the numerator is the marginal total of a table (subset)
- Probability of event A,

$$
P(A)=\frac{n_{A}}{n_{A}+n_{A^{c}}}
$$

Table in count

New test	ELISA		Total
	D+	D-	
T+	30	15	45
T-	5	50	55
Total	35	65	100

Table in probability

New test	ELISA		
	$\mathrm{D}+$	$\mathrm{D}-$	Marginal probability
$\mathrm{T}+$.3000	.1500	.4500
$\mathrm{~T}-$.0500	.5000	.5500
Marginal probability	.3500	.6500	1.000

Joint Probability

- Probability when the numerator is the joint count, i.e. for $\mathrm{A} \& \mathrm{~B}$, when both occurs
- Intersection between events
- Joint probability of A and B,

$$
P(A \cap B)=P(A, B)=\frac{n_{A, B}}{N}
$$

Table in count

Table in probability

New test	ELISA		
	$\mathrm{D}+$	$\mathrm{D}-$	Marginal probability
$\mathrm{T}+$.3000	.1500	.4500
$\mathrm{~T}-$.0500	.5000	.5500
Marginal probability	.3500	.6500	1.000

Conditional Probability

- Probability calculated with a subset of the sample space as denominator
- Probability of A given B,

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \text { if } P(B) \neq 0
$$

Table in count

New test	ELISA		$P(D+\mid T+) ?$
	D+	D-	
T+	30	15	45
T-	5	50	55
Total	35	65	100
$P(D-\mid T-) ?$			

Table in probability

New test	ELISA		Total	$P(D+\mid T+)$
	D+	D-		
T+	.3000	.1500	.4500	
T-	.0500	.5000	.5500	
Total	.3500	.6500	1.000	

$$
P(D-\mid T-)=\frac{P(T-\cap D-)}{P(D-)}
$$

Probability Laws

Multiplication Law

- Calculate joint probability by,

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Multiplication Law

New test	ELISA		Marginal
	$\mathrm{D}+$	$\mathrm{D}-$	$P(A \cap B)$ probability
$\mathrm{T}+$.3000	.1500	.4500
T-	.0500	.5000	.5500
Marginal probability	.3500	.6500	1.000

$$
P(D+\cap T+)=P(D+\mid T+) P(T+)=.6667 \times ?
$$

Law of Total Probability

- For disjoint events $B_{1}, B_{2}, \ldots, B_{n}$ with $P\left(B_{i}\right)>0$ for all i, then

$$
P(A)=\sum_{i=1}^{n} P\left(A \cap B_{i}\right)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

Table in probability

New test	ELISA								
	D +	D-	Marginal						
probability				$	$	$\mathrm{T}+$.6667	.3333	.4500
:---:	:---:	:---:	:---:						
$\mathrm{~T}-$.0909	.9091	.5500						
$*$	$*$	$*$	$*$						

$$
\begin{gathered}
P(D+)=\sum P\left(D+\mid T_{i}\right) P\left(T_{i}\right)= \\
P(D+\mid T+) P(T+)+P(D+\mid T-) P(T-)=?
\end{gathered}
$$

Table in probability

New test	ELISA		Marginal
	Drobability		

$$
P(D-)=\sum P\left(D-\mid T_{i}\right) P\left(T_{i}\right)=?
$$

Bayes' Rule

- For disjoint events $B_{1}, B_{2}, \ldots, B_{n}$ with $P\left(B_{i}\right)>0$ for all i, then,

$$
P\left(B_{j} \mid A\right)=\frac{P\left(A \cap B_{j}\right)}{P(A)}=\frac{P\left(B_{j}\right) P\left(A \mid B_{j}\right)}{\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)}
$$

Posterior probability $=\frac{\text { Prior probability } \times \text { Likelihood }}{\text { Marginal probability }}$

Table in probability

New test	ELISA		$*$	$P\left(B_{j} \mid A\right)=\frac{P\left(A \cap B_{j}\right)}{P(A)}$		
	$\mathrm{D}+$	$\mathrm{D}-$				
$\mathrm{~T}+$.8571	.2308	$*$	Prior expert knowledge		
T-	.1429	.7692	$*$			$P(D+)=.85$
:---:						
$P(D-)=.15$						

$P(D+\mid T+)=\frac{P(T+\cap D+)}{P(T+)}$ Use multiplication law Use law of total probability

Table in probability

New test	ELISA		$*$	$P\left(B_{j} \mid A\right)=\frac{P\left(A \cap B_{j}\right)}{P(A)}$		
	$\mathrm{D}+$	$\mathrm{D}-$				
$\mathrm{~T}+$.8571	.2308	$*$	Prior expert knowledge		
T-	.1429	.7692	$*$			$P(D+)=.85$
:---:						
$P(D-)=.15$						

$$
P(D+\mid T+)=\frac{P(T+\mid D+) P(D+)}{P(T+\mid D+) P(D+)+P(T+\mid D-) P(D-)}=?
$$

Table in probability

New test	ELISA		$*$	$P\left(B_{j} \mid A\right)=\frac{P\left(A \cap B_{j}\right)}{P(A)}$		
	$\mathrm{D}+$	$\mathrm{D}-$				
$\mathrm{~T}+$.8571	.2308	$*$	Prior expert knowledge		
T-	.1429	.7692	$*$			$P(D+)=.85$
:---:						
$P(D-)=.15$						

$$
P(D+\mid T-)=\frac{P(T-\cap D+)}{P(T-)}=\frac{P(T-\mid D+) P(D+)}{P(T-\mid D+) P(D+)+P(T-\mid D-) P(D-)}=?
$$

