Probability Theory

Dr. Wan Nor Arifin

Biostatistics and Research Methodology Unit Universiti Sains Malaysia

Last update: Oct 25, 2023

Outlines

- Introduction
- Basic Concepts
- Counting Methods
- Marginal, Joint and Conditional Probabilities
- Probability Laws

Expected outcomes

- Understand the basic concepts in probability
- Able to calculate probability by counting method
- Understand the concept of conditional probability and able to apply the concept to calculate related probability

Introduction

Introduction

Probability is...

"the chance that a given event will occur" (Merriam-Webster, 2022) "a branch of mathematics that studies the possible outcomes of given events together with the outcomes' relative likelihoods and distributions" (Weisstein, 2022)

Range: **Impossible** $0 \rightarrow 1$ **Certain**

- Classical
- Frequentist
- Bayesian

• Classical

- Game of chance flipping coin, rolling dice
- Finite number of possible outcomes
- Frequentist
- Bayesian

$$P(A) = \frac{N_A}{N}$$

Example: If a fair 6-sided die is rolled, probability of getting a 1 is

$$P(1) = \frac{1}{6}$$

- Classical
- Frequentist
- Bayesian

$$P(x) \approx \frac{n_x}{n_t}$$

• Relative frequency of outcome after a

number of repetition of random trials

Example: Based on data collected over 200 years, it rained 15 out of 30 days in September. The probability of rain on 23 Sept 2022 is

$$P(\text{Rain on September 23}) = \frac{15}{30} = \frac{1}{2}$$

- Classical
- Frequentist
- Bayesian

- 1763 Thomas Bayes Bayes' Theorem
- Updates prior knowledge (probability) in light of new data
- Will be introduced formally later in this lecture

Basic Concepts

- Experiment
- Sample Space
- Event

- Union
- Intersection
- Complement
- Disjoint

- Experiment A situation for which the outcomes occur randomly
- Sample Space List of all possible outcomes of an experiment, Ω
- Event

A subset of the sample space

Sample space for a fair 6-sided die,

 $\Omega \!=\! \{1,\!2,\!3,\!4,\!5,\!6\,\}$

Event A, odd numbers for a fair 6-sided die,

 $A = \{1, 3, 5\}$

When either A or B or both occurs

 $A = \{1,2,3\}$ $B = \{3,4,5\}$ $A \cup B = \{1,2,3,4,5\} = \{1,2,3,4,5\}$

• Union

- Intersection
- Complement
- Disjoint

When both A and B occurs

$$A = \{1,2,3\}$$
$$B = \{3,4,5\}$$
$$A \cap B = \{1,2,3,3,4,5\} = \{3\}$$

- Union
- Intersection
- Complement
- Disjoint

- Union
- Intersection

• Complement

• Disjoint

When A does NOT occur

$$\Omega = \{1, 2, 3, 4, 5, 6\} \\
A = \{1, 2, 3\} \\
A^{C} = \\
\{1, 2, 3, 4, 5, 6\} = \{4, 5, 6\}$$

- Union
- Intersection
- Complement
- Disjoint

When two events have no shared elements

$$A = \{1, 2, 3\}$$

 $C = \{4, 5, 6\}$
 $A \cap B = \emptyset$

${\mathcal O} \text{ is empty set}$

Properties

- 1. $P(A^{c})=1-P(A)$
- 2. $P(\mathcal{A}) = 0$
- 3. If $A \subset B$, then $P(A) \leq P(B)$
- 4. Addition Law $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Counting Methods

Multiplication Principle

Basic: If one experiment has *m* outcomes and another experiment has *n* outcomes, then there are *mn* possible outcomes for the two experiments.

Example: Playing cards have 13 face values (outcomes) per suit and 4 suits (experiments). Thus

 $13 \times 4 = 52$ face values

Multiplication Principle

Extended: If there are p experiments and the 1st has n_1 possible outcomes, the 2nd n_2 , ..., and the *p*th n_p possible outcomes, then there are a total of

 $n_1 \! imes \! n_2 \! imes \! \dots \! imes \! n_p$

possible outcomes for the *p* experiments.

Example: A fair 10 cent coin is thrown 4 times, each with two possible outcomes (hibiscus, congkak), thus

 $2 \times 2 \times 2 \times 2 = 2^4 = 16$ possible outcomes

 $\{HHHH, CCCC, HHHC, ...\}$

Permutation

For a set of size *n* and a sample of size *r*, the number of different ordered samples **without** replacement:

$${}^{n}P_{r} = \frac{n!}{(n-r)!} = n(n-1)(n-2)...(n-r+1)$$

Example: If the same number cannot appear twice, how many different ways to arrange number 0 - 9 to form a 3 digits number sequence?

Sample size, r = 3; Number of elements, n = 10

$${}^{n}P_{r} = \frac{n!}{(n-r)!} = \frac{10!}{7!} = 10.9.8 = 720$$
 ways

Permutation

For a set of size n and a sample of size r, there are

 n^{r}

different ordered samples with replacement

Example: How many different ways to arrange number 0 - 9 to form a 3 digits number sequence?

Sample size, r = 3; Number of elements, n = 10

 $n^r = 10^3 = 1000$ ways

Combination

The number of unordered samples of *r* objects from *n* objects **without** replacement:

Binomial coefficient

$${}^{n}\overline{C_{r}} = \begin{pmatrix} n \\ r \end{pmatrix} = \frac{n(n-1)(n-2)\dots(n-r+1)}{r!} = \frac{n!}{(n-r)!} \times \frac{1}{(r)!} = \frac{n!}{(n-r)!r!}$$

Example: If the same color cannot appear again, how many combinations of 2 colors out of 3 colors are possible?

Combination

The number of unordered samples of *r* objects from *n* objects **with** replacement:

$$rac{(r+n-1)!}{r!(n-1)!}$$

Example: How many combinations of 2 colors out of 3 colors are possible?

$$r = 2; n = 3$$

$$\frac{(r+n-1)!}{r!(n-1)!} = \frac{(2+3-1)!}{2!(3-1)!} = \frac{4!}{2!2!} = \frac{4.3}{2!} = 6$$

$$RR \qquad RG \qquad RB \qquad BB \qquad GB$$

Combination

The number of ways that n objects can be grouped into r classes with n_i in the *i*th class: Multinomial coefficient

 $\binom{n}{n_1 n_2 \dots n_r} = \frac{n!}{n_1! n_2! \dots n_r!}$

Example: A group of 7 eligible subjects in a clinical trial is allocated into 3 groups with size of 3, 2 and 2. How many ways the allocation could be done?

$$\binom{7}{322} = \frac{7!}{3!2!2!} = \frac{7.6.5.4.3!}{3!2!2!} = \frac{7.6.5.4}{2.1.2.1} = 210$$

Marginal, Joint and Conditional Probabilities

Marginal Probability

- Probability when the numerator is the <u>marginal</u> total of a table (subset)
- Probability of event A,

$$P(A) = rac{n_A}{n_A + n_{A^c}}$$

Table in count

P(T+)?

New test	ELISA		Marginal
	D+	D-	probability
T+	.3000	.1500	.4500
T-	.0500	.5000	.5500
Marginal probability	.3500	.6500	1.000

Joint Probability

- Probability when the numerator is the joint count, i.e. for A & B, when both occurs
- Intersection between events
- Joint probability of A and B,

$$P(A \cap B) = P(A, B) = \frac{n_{A,B}}{N}$$

Table in count

P(T - , D -)?

	ELISA		Marginal
New test	D+	D-	probability
T+	.3000	.1500	.4500
T-	.0500	.5000	.5500
Marginal probability	.3500	.6500	1.000

Conditional Probability

- Probability calculated with a subset of the sample space as denominator
- Probability of A given B,

$$P(A | B) = \frac{P(A \cap B)}{P(B)}, \text{ if } P(B) \neq 0$$

Table in count

	ELISA		
New test	D+	D-	Total
T+	30	15	45
T-	5	50	55
Total	35	65	100

P(D+|T+)?

P(D - |T -)?

New test	ELISA		Total
	D+	D-	Total
T+	.3000	.1500	.4500
T-	.0500	.5000	.5500
Total	.3500	.6500	1.000

$$\begin{split} &P\left(D + | \, T + \right) \\ &= \frac{P\left(D + \cap T + \right)}{P\left(T + \right)} \end{split}$$

$$P(D-|T-) = \frac{P(T-\cap D-)}{P(D-)}$$

Probability Laws

Multiplication Law

• Calculate joint probability by,

 $P(A \cap B) = P(A \mid B)P(B)$

Multiplication Law

New test	ELISA		Marginal
	D+	D-	probability
T+	.3000	.1500	.4500
T-	.0500	.5000	.5500
Marginal probability	.3500	.6500	1.000

 $P(A \cap B) = P(A | B)P(B)$

 $P(D + \cap T +) = P(D + |T +)P(T +) = .6667 \times ?$

Law of Total Probability

• For disjoint events $B_{i}, B_{2}, ..., B_{n}$ with $P(B_{i}) > 0$ for all *i*, then

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(A | B_i) P(B_i)$$

	ELISA		Marginal
New test	D+	D-	probability
T+	.6667	.3333	.4500
T-	.0909	.9091	.5500
*	*	*	*

$$\begin{split} P(D+) = &\sum P(D+|T_i) P(T_i) = \\ P(D+|T+) P(T+) + P(D+|T-) P(T-) = ? \end{split}$$

	ELISA		Marginal
New test	D+	D-	probability
T+	.6667	.3333	.4500
T-	.0909	.9091	.5500
*	*	*	*

 $P(D-) = \sum P(D-|T_i)P(T_i) = ?$

Bayes' Rule

• For disjoint events $B_{i}, B_{2}, ..., B_{n}$ with $P(B_{i}) > 0$ for all *i*, then,

$$P(B_{j}|A) = \frac{P(A \cap B_{j})}{P(A)} = \frac{P(B_{j})P(A|B_{j})}{\sum_{i=1}^{n} P(A|B_{i})P(B_{i})}$$

 $Posterior \ probability = \frac{Prior \ probability \times Likelihood}{Marginal \ probability}$

New test	ELISA		*
	D+	D-	·
T+	.8571	.2308	*
T-	.1429	.7692	*
Marginal probability	.3500	.6500	*

$$P(B_j|A) = \frac{P(A \cap B_j)}{P(A)}$$

Prior expert knowledge

$$P(D+)=.85$$

 $P(D-)=.15$

 $P(D+|T+) = \frac{P(T+\cap D+)}{P(T+)}$ Use multiplication law Use law of total probability

New test	ELISA		*
	D+	D-	
T+	.8571	.2308	*
T-	.1429	.7692	*
Marginal probability	.3500	.6500	*

$$P(B_j|A) = \frac{P(A \cap B_j)}{P(A)}$$

Prior expert knowledge

$$P(D+)=.85$$

 $P(D-)=.15$

$$P(D+|T+) = \frac{P(T+|D+)P(D+)}{P(T+|D+)P(D+) + P(T+|D-)P(D-)} = ?$$

New test	ELISA		*	
INEW IESI	D+	D-		P
T+	.8571	.2308	*	-
T-	.1429	.7692	*	F k
Marginal probability	.3500	.6500	*	

$$P(B_j|A) = \frac{P(A \cap B_j)}{P(A)}$$

Prior expert knowledge

$$P(D+)=.85$$

 $P(D-)=.15$

$$P(D+|T-) = \frac{P(T-\cap D+)}{P(T-)} = \frac{P(T-|D+)P(D+)}{P(T-|D+)P(D+)+P(T-|D-)P(D-)} = ?$$